Visualization of Social Networks in Stata by
Multi-dimensional Scaling *

Rense Corten
Department of Sociology/ICS
Utrecht University
The Netherlands
r.corten@uu.nl

April 12, 2010

1 Introduction

Social network analysis (SNA) studies patterns of interaction between social entities (Wasserman
and Faust, 1994; Scott, 2000). In the past few decades, SNA has emerged as a major research
paradigm in the social sciences (including economics), and has also attracted attention in other
fields (Newman et al., 2006). While dedicated software for SNA exists (e.g., UCInet (Borgatti
et al., 1999) or Pajek (Bagatelj and Mrvar, 2009)), Stata currently lacks readily available facilities
for SNA. In this paper, we illustrate how methods for SNA can be developed in Stata, using
network visualization as an example.

Visualization is one of the oldest methods in SNA and is still one of its most important and
widely applied tools to uncover patterns of relations (Freeman, 2000). We describe a procedure for
network visualization using Stata’s built-in procedures for multidimensional scaling and describe
an implementation as a Stata command. While we believe that network visualization in itself can
be highly useful, the example also illustrates how SNA problems can be handled in Stata more
generally.

2 Methods

2.1 Some terminology

Network visualization is concerned with showing binary relations between entities. Adopting the
terminology of graph theory, we refer to these entities as vertices. Relations between vertices may
be directed, if they can be understood as flowing from one vertex to another, or undirected if no
such direction can be identified. We refer to directed relations as arcs and to undirected relations
as edges. A typical representation of a network of relations is an adjacency matriz, as shown in
Figure 1 for a network of 10 vertices. In this matrix, every cell represents a relation from a vertex
(row) to another vertex (column); for undirected networks, this matrix is symmetric. Vertices
that have no edges or arcs are called isolates. The number of edges connected to a vertex is called
the degree of the vertex. Lastly, the distance between two vertices is defined as the shortest path
between them. If there is no path between two isolates, we define the distance between them as
infinite.

*I thank Jeroen Weesie for highly useful comments and suggestions. This paper is currently under review at the
Stata Journal.

1 2 3 4 5 6 7 8 9 10
170 1.1 0 1 0 0O 0 0 O
211 0 0 1. 01 01 0 O
3(1 0 0 0 0 0 O O O O
410 1 0 0 0 0 1 0 0 O
5|11 0 0 0 0 0O 0O 0 0 O
6 /0 1 0 0 0 0 1 0 0 O
710 0 0 1 0 1 O O O O
80 1.0 0 0 0 O O 1 O
910 0 0 0 0 0 O 1 0 O
10(0 0 0 0 0 0O 0O O O O

Figure 1: An adjacency matrix, N = 10

coll col2

\]
[

© 00 O UL W N+
© 00O Uk Ww
O NI~

—
s}
—
s}

Figure 2: Edgelist based on the adjacency matrix in Figure 1

2.2 Data structure

One particular obstacle in analyzing network data in conventional statistics packages such as Stata
is the specific structure of relational data. Whereas in conventional datasets, one line in the data
typically represents an individual entity, observations in relational datasets represent relations
between entities.

We assume that data are available as a list of edges or arcs. That is, for a network of k relations,
we have a k x 2 data matrix, in which every row represents an edge (if the network is undirected)
or arc (if the network is directed) between two vertices in the cells. The use of edgelist and arclists
is an often more economical way to store network data than an adjacency matrix, especially for
networks that are relatively sparse.

We extend the traditional edgelist and arclist formats by allowing the use of missing values.
We use missing values to include isolates in the list (Fig. 2). In Figure 1, vertex 10 is isolated; in
Figure 2, its vertex number appears in one column but is accompanied by a missing value in the
other column.The order of appearance might be reversed. Thus, a network consisting of k edges
and N vertices of which h isolates can be represented by a (k + h) x 2 matrix.

2.3 Procedure

The main task in network visualization is to determine the positions of the vertices in a (typically
two-dimensional) graphical layout. Obviously, the optimal placement of vertices depends on the
purpose of the analysis, but it is often desirable to place vertices that have a central position in
the network also centrally in the graphic and to represent larger distance in the network by a
larger distance in the two-dimensional graph. Various algorithms have been proposed to solve
this problem, of which those by Kamada and Kawai (1989) and Fruchterman and Reingold (1991)
are probably most widely used. Instead, we use multidimensional scaling (MDS) to compute

coordinates for the vertices, which has the advantage of being available in Stata by default. The
use of MDS for network visualization has a long history in SNA and was first used as such by
Laumann and Guttman (1966).

Assuming that we have a relational dataset formatted as an edgelist, we propose to visualize
the network by the following procedure:

1. Reshape the data into an adjacency matrix;
2. Compute the matrix of shortest paths (the distance matrix);
3. Compute coordinates for the vertices, arranged on a circle, in a random order;

4. Compute coordinates for the vertices by mds, using the “modern” method, and using the
coordinates circle layout obtained in the previous step as starting positions;

5. Draw the graphic by combining the twoway plot types pcspike or pcarrow and scatter.

In our implementation, steps 1-3 are performed in Mata. The calculation of the distance
matrix (step 2) involves calculating higher powers of the adjacency matrix, and can be rather
time-consuming for larger networks. More efficient procedures for obtaining distances in a network
are feasible, but not implemented in our example.

We choose Stata’s iterative “modern” mds method for step 4 because it allows for the spec-
ification of starting positions and appears to provide better results in our tests. In particular,
the modern method performs better than the “classic” method with regard the placement of ver-
tices that have identical distances to all other vertices (for example, vertices in the periphery of
a “star”). Experimentation furthermore suggests that starting with a circular layout provides the
best results. !

3 Implementation: the netplot command

Syntax:

netplot warl var2 [zf] [m} [, type(mds|circle) label arrows lterations(#)]

The command netplot produces a graphical representation of a network stored as an extended

edgelist or arclist in varl and var2.

type (string) specifies the type of layout. Valid values are:
circle: vertices are arranged on a circle
mds: positions of vertices are calculated using multidimensional scaling. This is the default;
omitting type () is equivalent to specifying type (mds).

label specifies that vertices are to be labeled using their identifiers in varl and var2

arrows specifies that arrows rather than lines are drawn between vertices. Arrows run from the
vertex in varl to the vertex in var2. This option is useful for arclists that represent directed
relations.

iterations (#) specifies the maximum number of iterations in the multidimensional scaling pro-
cedure. The default is iterate (1000).

4 Examples

To illustrate the process outlined above we use a well-known dataset known as “Padgett’s Floren-
tine Families,” which contains information on relations among 16 families in 15th century Florence,
Italy (Padgett and Ansell, 1993). The part of the data we use represent marital relations between
the families. These relations are by nature undirected. The data are described below:

1Internally7 our program issues the command mdsmat distance matriz, noplot method(modern)
initialize(from(circle matriz)) iterate(#).

. desc

Contains data from padgett_maritalO2_undir.dta

obs: 21 Padgett marital data with
undirected ties
vars: 2 22 Jan 2010 17:37
size: 588 (99.9% of memory free) (_dta has notes)
storage display value

variable name type format label variable label
from stri2 %12s family 1 name
to stri2 %12s family 2 name

Sorted by: from to
. list, sepby(from)

from to

1. Pucci

2. Albizzi Guadagni

3. Albizzi Medici

4. Barbadori Medici

5. Bischeri Guadagni

6. Bischeri Peruzzi

7. Bischeri Strozzi

8. Castellani Barbadori

9. Castellani Strozzi

10. Ginori Albizzi
11. Guadagni Lamberteschi
12. Medici Acciaiuoli
13. Medici Salviati
14. Medici Tornabuoni
15. Pazzi Salviati
16. Peruzzi Castellani
17. Peruzzi Strozzi
18. Ridolfi Medici
19. Ridolfi Tornabuoni
20. Strozzi Ridolfi
21. Tornabuoni Guadagni

Note that the data are in this case formatted as strings, simply using the family names as
identifiers for the vertices of the network.

The first example shows the most basic usage of netplot, using the command netplot from
to, which produces a network plot of the data based as resulting from multidimensional scaling
(Fig. 3).

In many analyses it is useful to be able to identify specific vertices in the network, which is
facilitated by adding labels to the plot using the option label (Fig. 4). We can now observe that
this network has a cohesive core formed by the Medici, Ridolfi and Tornabuoni families, and that
the isolated vertex is the Pucci family. The rotation of the graph and the different location of the
isolated vertex as compared to Figure 3 is caused by the randomized initial positions used in the

MDS procedure.?

Sometimes it is not necessary to have the relatively complicated plot as produced by multi-
dimensional scaling. Then, a simple view on the data can be produced by the circle option
(Fig. b).

For our final example with these data, we assume that the data are directed. That is, we
assume that each line in the data represents a relation from the vertex in “from” to the vertex in
“to.” Imagine, for instance, that the data now represent whether a family has ever sold goods to
another family. Such situations can be visualized using the option arrows, which draws arrows
instead of lines between the vertices (Fig. 6). The graph in this example was slightly adjusted
afterwards using the Graph Editor, by reducing the sizes of the markers in order to make the
arrowheads better visible.

As a final example, we draw a plot of a somewhat larger network of 100 vertices. The data for
this example were simulated using the “preferential attachment” algorithm proposed by Albert
and Barabasi (1999) to construct the network (Fig. 7).3

This example highlights two limitations of netplot. First, as Figure 7 shows, vertex placement
can be suboptimal: several vertices (such those labeled 63, 58, and 68) in the figure are placed too
far from neighboring vertices, leading to many crossings of edges and an overall unpleasing result.
The reason is that, in this particular tree-like network structure, there are many vertices (such as
those mentioned) that have the exact same distance to all other vertices, which makes placement
by MDS difficult. Second (not visible in the figure), the procedure becomes considerably more
time-consuming with this number of vertices. We discuss this issue in more detail in the next
section.

5 Performance

To get of rough idea of the performance of netplot in terms of computation time we conduct
two simulated tests. First, we draw plots of networks of increasing network size, keeping network
density constant at .5. Note that this leads to an exponentially increasing number of edges in
the network. To draw the plots, we use neplot without any options. The input networks are
randomly generated Erdés-Rényi graphs (Erdés and Rényi, 1959). 4

For the second test, we again draw plots with increasing network size, but keep average degree
constant rather than density. This implies a linear increase in the number of edges in the network.
We use an average degree of 3.

In both test, we look at networks sizes ranging from 5 to 100 in steps of 5, and keep track of
the time needed to draw a graph over 10 iterations per network size.

The results are shown in Figure 8. The figure indicates that average time increases quadratically
with network size, although more strongly with constant density than with constant degree. Closer
analysis (not reported) of the running time of the different components of the program reveals
that the computation of coordinates using MDS (after computation of distances) is the most
time-consuming step in the procedure.

6 Discussion

In this paper we have demonstrated how network data can be visualized in Stata, using the built-in
techniques for multidimensional scaling and graphics. This method often produces useful results,
although not always for all networks. Moreover, for larger networks the time needed to compute
vertex coordinates can become a nuisance, especially when several trials are needed to achieve a

2The placement of labels outside the plotregion is part of the default behavior of twoway scatter, which is used
by netplot. This can be easily adjusted afterwards.

3The actual simulation was conducted in Mata. The function in which the Albert-Barabasi algorithm is imple-
mented is part of a larger library of functions for network analysis under development by the author.

4The tests were run in Stata 11 SE on a PC with a 2.66GHz dual core processor and 1Gb of memory, and
running the Microsoft Windows XP 32-bit operating system.

Figure 3: Example: Marital relations between Florentine families with vertex placement by MDS

@ Pucci

Figure 4: Example: Marital relations between Florentine families with vertex placement by MDS
and labels added

@ Pucci

Figure 5: Example: Marital relations between Florentine families with circular vertex placement
and labels

@ Pucci

Figure 6: Example: Marital relations between Florentine families as directed relations with vertex
placement by MDS and labels

Figure 7: Example: A simulated network of 100 vertices with vertex placement by MDS

30 40
1

Time (seconds)
20
1

L — L L R
0 10 20 30 40 50 60 70 80 90 100

Figure 8: Average computation time by network size

satisfying result. As a workaround for this problem, the number of iterations may be limited using
the iterations () option.

Visual results could likely be improved by using different vertex placement algorithms than
MDS. Good candidates are the often used “spring embedding” algorithms by Kamada and Kawai
(1989) and Fruchterman and Reingold (1991). Given the program architecture of netplot, these
methods could be added relatively easily, and implementing them would be an obvious target for
future development. It is, however, not clear how the Kamada-Kawai and Fruchterman-Reingold
algorithms compare to MDS in terms of computation time.

Another approach to improving efficiency is to use more efficient methods for computing dis-
tances in the network. The simple approach currently implemented, based on repeated matrix
squaring, computes quite some unneeded information in the process. More efficient algorithms for
computing shortest paths exist (i.e., Cormen et al., 2001) and might be implemented in the future.

The introduction of Mata with Stata 9 has made matrix programming more effective and more
accessible for the average user. This opens up further possibilities for the development of SNA
methods in Stata. Especially the fact that Mata can be used interactively makes it easier to use the
alternative data structures representing networks common in SNA. The quickly growing interest
in social networks in and outside the social sciences certainly justifies the further development of
SNA methods for Stata.

References

Albert, R. and A.-L. Barabési (1999). Emergence of scaling in random networks. Science 286,
509-512.

Bagatelj, V. and A. Mrvar (2009). Pajek.
Borgatti, S. P., M. G. Everett, and L. C. Freeman (1999). Ucinet 5.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001). Introduction to Algorithm
Design (Second ed.). Cambridge, MA: MIT Press.

Erdos, P. and A. Rényi (1959). On random graphs i. Publicationes Mathematicae Debrecen 6,
290-297.

Freeman, L. C. (2000). Visualizing social networks. Journal of Social Structure 1(1).

Fruchterman, T. M. J. and E. M. Reingold (1991). Graph drawing by force-directed placement.
Software-Practice and Experience 21(1 1), 1129-1164.

Kamada, T. and S. Kawai (1989). An algoritm for drawing general undirected graphs. Information
Processing Letters 31, 7-15.

Laumann, E. O. and L. Guttman (1966). The relative associational contiguity of occupations in
an urban setting. American Sociological Review 31(2), 169-178.

Newman, M., A.-L. Barabdsi, and D. Watts (Eds.) (2006). The Structure and Dynamics of
Networks. Princeton, NJ: Princeton University Press.

Padgett, J. F. and C. K. Ansell (1993). Robust action and the rise of the medici, 1400-1434. The
American Journal of Sociology 98(6), 1259-1319.

Scott, J. (2000). Social Network Analysis: A Handbook (second ed.). London: Sage.

Wasserman, S. and K. Faust (1994). Social Network Analysis: Methods and Applications. Cam-
bridge: Cambridge University Press.

